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Abstract

The homogenization theory for nonlinear time-dependent composites with periodic internal structures developed by
the present authors is rebuilt on the assumption that constituents, stress and strain distribute point symmetrically with
respect to the center of each unit cell in periodic composites. It is proved that this symmetry also allows the field of
perturbed velocity to satisfy the symmetry with respect to the cell boundary facet centers. The symmetry is then used for
imposing the boundary condition on perturbed velocity and for developing the theory in an integral form in which a
half of the unit cell is taken as the domain of analysis. As applications of the theory, elastic—viscoplastic elongation of
unidirectional composites is analyzed by assuming the square and hexagonal arrays of fibers subjected to either
transverse or off-axial loading. It is thus shown that the point symmetry can be used for computing efficiently the
inelastic behavior of nonlinear, periodic composites. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The homogenization method based on the two-scale asymptotic expansion of field variables was
developed for composites with periodic and quasi-periodic internal structures (Babuska, 1976; Sanchez-
Palencia, 1980; Bakhvalov and Panasenko, 1984; Guedes and Kikuchi, 1990). This method has the capa-
bility of evaluating both macroscopic constitutive behavior and microscopic distributions of stress and
strain, in contrast to simple methods effective only for the overall behavior of such composites. The method
is therefore useful and has been applied to various problems starting with elastic one. For time-dependent
deformation, however, only linear viscoelasticity and steady-state creep were dealt with previously (San-
chez-Palencia, 1980; Aravas et al., 1995; Shibuya, 1996; Yi et al., 1998).

The present authors then developed a homogenization theory for nonlinear time-dependent composites
with periodic internal structures (Wu and Ohno, 1999; Ohno et al., 2000). This theory was formulated
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without and with recourse to the asymptotic expansion in the macroscopically uniform and nonuniform
cases, respectively. The theory is of the rate type so that the fields of displacement, stress, strain, etc. can be
computed incrementally. In other words, on the assumption that the current fields of such variables are
known, the fields of their rates are computed to know their fields after a small increment of time. This kind
of rate-type formulation is in general used for nonlinear problems such as the homogenization of elastic—
plastic and/or large deformation of periodic composites (e.g., Abeyaratne and Triantafyllidis, 1984; Agah-
Tehrani, 1990; Terada et al., 1995; Okada et al., 1998).

The distributions of stress and strain may develop point symmetrically with respect to the center of each
unit cell in periodic composites in many cases, as will be illustrated in Section 2. Then, a half of the unit cell
can be sufficient for the incremental analysis based on the rate-type formulation. Nevertheless, because of
the periodic condition to be satisfied on the unit cell boundary, the whole of a unit cell has been taken to be
the domain of analysis even in recent studies including the present authors’ works, in which the point
symmetry of internal distributions with respect to the cell center is applicable (Terada et al., 1996; Okada
et al., 1998; Wu and Ohno, 1999; Ohno et al., 2000). It is then worthwhile to discuss what replaces the
periodic boundary condition in order to reduce the domain of analysis by half when the point symmetry
prevails. Incidentally, appropriate boundary conditions were already shown for the line and hexagonal
symmetries (Lene, 1984; Suquet, 1987).

This work deals with the homogenization of periodic composites in which the internal distributions
develop point symmetrically with respect to the center of each unit cell. First, proving that perturbed
velocity satisfies the point symmetry with respect to the cell boundary facet centers as well as the cell center,
we point out that this symmetry can be utilized for prescribing the boundary condition of perturbed
velocity and for reducing the domain of analysis to half a unit cell. Then, this finding is used to rebuild
the homogenization theory of nonlinear time-dependent composites formulated by the present authors.
Finally, as applications of the resulting theory, elastic—viscoplastic elongation of unidirectional composites
is analyzed by assuming the square and hexagonal arrays of fibers subjected to either transverse or off-axial
loading. It is thus shown that the point symmetry can be used for computing efficiently the inelastic be-
havior of nonlinear, periodic composites.

2. Property of perturbed velocity field

In this work, we consider a simple case in which an infinite body Q with a periodic internal structure is
subjected to macroscopically uniform stress and strain. Then, the homogenized behavior of Q can be
discussed by analyzing the smallest repeatable element, i.e., unit cell Y. Infinitesimal strain is assumed to
take place in Q macroscopically and microscopically.

Let y; (i = 1,2, 3) be the local rectangular coordinates taken for Y and its vicinity. Then, the velocity field
in Y and its vicinity at time ¢, #;(y, ), can have an expression

it(p, 1) = Fiy(0)y; + é(0) + i (v,0), (1)

where the superposed dot denotes the differentiation with respect to ¢, F;(¢) and c;(¢) macroscopic deforma-
tion gradient and rigid displacement, respectively, and u the deviation of u; from the macroscopic de-
formation including rigid displacement. From now on ! is referred to as perturbed displacement. It is
noted that » distributes periodically from unit cell to unit cell as a result of the periodic internal structure
of Q. This periodicity is called the Y-periodicity.

Using Eq. (1), strain rate is expressed as

&y = Ey + egey ("), (2)

where E,»j and e;,) (#) denote macroscopic and perturbed strain rates, respectively:
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Ey =3(F;+ Fy), (3)
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It is emphasized that perturbed strain rate is a consequence of the internal distributions of constituents,
stress, strain and so on in @ since no such internal distributions cause only £;;.

Let us now assume that the internal distributions, responsible for perturbed velocity, satisfy the sym-
metry with respect to the center of ¥, Cy, in addition to the Y-periodicity, as illustrated in Fig. 1. Then, we
can give a proof that the internal distributions also satisfy the symmetry with respect to the boundary facet
centers of ¥, C; (i=1,2,...,N), where N indicates the total number of cell boundary facets. For the 2D
unit cells, C; (i = 1,2,...,N) refer to the middle points of cell sides, and N = 4 and 6 when Y is square and
hexagonal, respectively. The proof is simple. Let P be any point in Y, and let P; and Py be the symmetric
points of P with respect to C; and C,, respectively. Moreover, let C; be the symmetric point of C; with
respect to Cy (Fig. 1). Then,

CP+CP =0, (5)

—

CP+CPy =0. (6)
Hence,

—_—

C,‘Pi == CiPO' (7)

This equation means that Py and P, take the positions at which the Y-periodicity is to be satisfied, and
consequently that Py and P; have the same internal states. Then, since P and Py have been assumed to have
the same internal states, P and P; also have the same. Therefore, the internal distributions satisfy the
symmetry with respect to C; (i =1,2,...,N) as well as Cy. Vice versa, if the internal distributions are
symmetric with respect to Cy and C; (i = 1,2,...,N), Py and P; have the same internal states, so that the

Distribution

of oy and ey

Inclusion

‘ Distribution of o; and ¢
(a) Parallelepiped (b) Hexagonal

Fig. 1. Schematic illustration of internal distributions in periodic composites subjected to macroscopically uniform load: (a) paral-
lelepiped and (b) hexagonal unit cells with points of symmetry for internal distributions.
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internal distributions are Y-periodic. The point symmetry with respect to Cy and C; (i = 1,2,...,N) will be
referred to as the C-symmetry hereafter.

When the internal distributions satisfy the C-symmetry, the point-symmetric transformation of material
points in Q with respect to any of C;, (k =0, 1,...,N) does not change the internal distributions. Moreover,
the transformation does not affect macroscopic loading, as seen from Fig. 1. Therefore, the field of per-
turbed velocity #, which is induced as a consequence of the internal distributions in © under macroscopic
loading, ought to satisfy the C-symmetry in addition to the Y-periodicity. Thus, we have

i‘i#(y(Pk)at):_a#(y<P)’t)v k=0,1,...,N, (8)

i
where P, indicates the symmetric point of P with respect to C,. Especially, if P coincides with C;, the above
equation is reduced to

i (9(Ce),t) =0, k=0,1,...,N. o)

Hence, ul# vanishes at C; (k =0,1,...,N) if the internal distributions have the C-symmetry.
Substitution of Eq. (8) into Eq. (2) gives

éij(y(Plf)’t):éij(y(P)7t)7 k:071a"'aN' (10)
This in turn means the C-symmetry of stress rate 6;; in Q is
O.-ij(y(Pk)7t):O.-ij(y(P)7l)a k:Oala"'7N' (11)

Incidentally, it can be shown that for parallelogram unit cells, the point symmetry of internal distri-
butions and Egs. (8)—(11) also hold at the cell vertices, and that for parallelepiped unit cells, they hold at the
cell vertices and also at the middle points of cell edges, as seen from Fig. 1(a).

3. Introduction of semiunit cell

It has been shown in Section 2 that the field of perturbed velocity, L’t,#(y, t), satisfies the C-symmetry, i.e.,
Eq. (8), if the internal distributions responsible for i/ have the symmetry with respect to C, in addition to
the Y-periodicity. This suggests the introduction of a semiunit cell ¥ (half a unit cell), on the boundary of
which either the C-symmetry or the Y-periodicity can be imposed on i as its boundary condition. Fig. 2(a)
and (b) illustrates 2D examples of Y. In the example shown in Fig. 2(a), i is prescribed to satisfy the
C-symmetry on AB and CD and the Y-periodicity on AD and BC; in Fig. 2(b), the C-symmetry is imposed
on " on all the sides of Y.

@ (b)

Fig. 2. Semiunit cell with boundary on which either C-symmetry or Y-periodicity of i is prescribed: (a) C-symmetry on AB and CD,
and Y-periodicity on AD and BC, and (b) C-symmetry on all sides.
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Let I" be the boundary of Y. Then, we can show the following equation to be used in the subsequent
section:

r

where 71; denotes the unit vector outward normal to I'. To see the above equation, let us divide I" into I'c
and I'y, on which the C-symmetry and the Y-periodicity of i are prescribed as its boundary condition,
respectively. For I'c, each boundary facet has a pair of points P and P, that are positioned symmetrically
with respect to the facet center C, (Fig. 2(b)). Then, using Egs. (8) and (11), and noting that #; is the same at
P and P;, we can show that the boundary integral of ¢;;7; it# on I'¢c is zero. For I'y, on the other hand, there
exists a pair of pomts P and P’ at which the Y-periodicity is to be satisfied (Fig. 2(a)). Then, because of the
Y-periodicity of i/ and the Y-antiperiodicity of 6,71;, the boundary integral of a,jnju# on I'y vanishes. We
thus have Eq. (12) In the same way, we can show that

/uﬁﬂf:u (13)
r

Incidentally, Shibuya (1996) noticed the symmetry of ill# with respect to the middle points of cell sides
in the special case of hexagonal unit cells. However, he did not show it, in general, on the basis of
the symmetry with respect to cell centers and the Y-periodicity; moreover, he did not discuss about re-
ducing the domain of analysis by introducing a semiunit cell, which is a matter of concern in the present
work.

4. Homogenization theory for time-dependent deformation

In this section, employing the semiunit cell ¥, introduced in Section 3, we rebuild the homogenization
theory of time-dependent deformation developed by the present authors (Wu and Ohno, 1999; Ohno et al.,
2000). Only the macroscopically uniform case, which does not need the asymptotic expansion of field
variables, is considered for simplicity. We thus show that ¥ allows the domain of analysis to be reduced by
half without changing the resulting equations.

The equilibrium of 6;; in  with no body force can be expressed as

o

=0. (14)

Let v;(y, ) be any variation of I:lff( ,t), so that v;(y, t) satisfies the C-symmetry and the Y-periodicity. Then,
by integrating (0¢;;/0y;)v; over Y, and by using the divergence theorem, the above equation is rewritten in
an integral form

/m&,(my'/@@mfza (15)
Y r

Since v;(y, ) is any variation of i (y, ), Eq. (12) with i/ (y, 7) replaced by v;(y, ) is valid. Consequently, the
second term in Eq. (15) vanishes. Thus, we have

Y

Now, we assume that the constituents of © exhibit linear elasticity and nonlinear creep characterized by
6y = Cyulen — P (o)), (17)
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where ¢;; and f;(¢) indicate, respectively, the elastic constants and creep functions of constituents, and
they satisfy

Cijki = Cjiki = Cijik = Cklij, (18)

B = Pu- (19)

Hereafter c;, and (), which can vary from constituent to constituent, will be regarded as functions of
the coordinates y, though not expressed explicitly.
Substitution of Egs. (17) and (2) into Eq. (16) gives

/}7c,«que,,q(y)(u#)e,;,-(y)(v)d?: —Ek,/yc,j,k,el;,-(y)(v)d?+/?c,-jk,ﬁk,(a)e,-j(y)(v)d?. (20)

This equation poses the following boundary value problem to find i/ (y,) in Y: Assuming that the current
distribution of g;; in Y is known, find the current field of perturbed velocity in Y, L't,#(y, t), which satisfies
Eq. (20) for any velocity field v;(y, ) defined in Y; &/ (y, r) and its variation v;(y, ) are subjected to either the
C-symmetric or Y-periodic condition on I', as was illustrated in Fig. 2.

Now, let y¥(y,7) and ¢,(y,7) be the functions which are determined by solving the following two
boundary value problems for the semiunit cell ¥, respectively:

/_ Cipgepatr) (1) esji) (V) dY = / cymeij) (v)dY, (21)
Y Y

/iCzy’pqepqcv)((/’)eij(y)(v)d?:/?Cijk/ﬁkz(")efj(v)(v)dY» (22)

where 1 (y, ) and ¢,(p, ¢) are prescribed to satisfy either the C-symmetric or Y-periodic condition on I', and
vi(y,t) is any velocity field satisfying this boundary condition. Then Eq. (20), in which i (v, 1) depends on
E;(¢) linearly through the first term in the right-hand side, has a solution

il (p,0) = = 0, O Eu(t) + 0,(v.1). (23)
Substituting Eqs. (2) and (23) into Eq. (17), we obtain an evolution equation of g;;
G0, 1) = ayu (v, OEu(t) = ry(v,1), (24)
where
it = Ciipg[OpOqr — €pyn) ()], (25)
rij = Cija[Bi (6) — e (@)]- (26)

Here and from now on, §;; indicates Kronecker’s delta. Let us introduce a volume average operator

1 ~
#) = [ #a7, 27)
\Y|Jy
where |)~’ | denotes the volume of Y. Eq. (24) then becomes a rate-type macroscopic constitutive equation
Z-j = <aijkl>Ekl - <rij>; (28)
where

(6y) = 2. (29)
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Moreover, taking the volume average of Eq. (2) with Eq. (4), and using the divergence theorem and Eq.
(13), we have
(€ij) = Eyj. (30)
Egs. (21)—(30), which enable us to compute the macroscopic constitutive behavior of Q as well as the
microscopic distributions of stress and strain in €, have been derived using the semiunit cell Y instead of the
unit cell Y. These equations, however, have the same forms, except for the boundary conditions of y* and
¢;, as in the previous works (Wu and Ohno, 1999; Ohno et al., 2000), so that the incremental computational
procedure described there is also useful in the present work: Let us suppose that the history of either X;; or
E;;, or a combination of them, is prescribed, and that the distributions of ¢;; and e;; in Y are known at the
current time 7. Egs. (21) and (22), can then be solved to find ¥ (y,#) and ¢,(y,?) using a finite element
method. When ' (y, ) and ¢,(y, 7) are found, Eq. (28) with the prescribed components of Z,;,— and E,-j allows
us to determine the unknown components of Z,,- and Ei,-. Subsequently Eqgs. (24) and (17) are used to
determine &, (y,7) and é;(p,f). Then, calculating the increments from ¢ to ¢+ Ar as AX; = 3,At,
Ac;; = 6;;At, etc., and adding the increments to the current values, we proceed to the succeeding time step.
Incidentally, Egs. (21)—(30) can be cast into incremental forms appropriate for finite values of A¢ in the
same way as in the previous works (Wu and Ohno, 1999; Ohno et al., 2000).

5. Examples of numerical analysis

In order to verify the present theory based on semiunit cells, we apply the theory to analyze the elastic—
viscoplastic properties of unidirectional fiber-reinforced composites subjected to transverse and off-axial
loading. Unit cells were used to analyze the properties previously (Ohno et al., 2000).

5.1. Material system

We consider two types of fiber arrangements, square and hexagonal arrays, shown in Fig. 3(a) and (b),
respectively. The y;- and y,-axes are taken in a plane perpendicular to the fiber orientation, as shown in the
figures, and the y;-axis is directed upward from the plane. The fibers, which are infinitely long and occupy
the volume fraction of ¥} in the composites, are assumed to obey Hooke’s law
_ 1ty Vs

€;j = O"——O'kké

— Ui ifs 31
Ef 2 Ef ] ( )

»2

e
@®
=

Y2

@

@

@ ®
@ &
(@) (b)

Fig. 3. Fiber array and coordinates: (a) square array and (b) hexagonal array.
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where Ey and v, are material constants. The matrix, on the other hand, is assumed to exhibit power-law
creep in addition to linear elasticity, i.e.,
L4V, V. 3.
— Em G[j — E—mGkkéij + EAUZq S,‘j, (32)
where E,,, v,,, A and n are material constants, s;; indicates the deviatoric part of ¢;;, and g.q = [(3/ 2)s,-js,-j]1/ 2,
Let us introduce the following nondimensional stresses, strains and time for convenience in computa-
tion:

e ij

.0y o2 . Epey
Gij__7 Z,‘j__a e,‘j_—7
g9 [0 )

E, = =T = AE oy 't (33)
(o) ’

where g, indicates an appropriate reference stress. Egs. (31) and (32) are then nondimensionalized as

e:f], = (1 —+ Vf)O'; — vfazkél-j, (34)
de;, E 0o}, do; 3
i f ) kk x \n—1 x
= 1 m — Vm 5i' Y ijo 35
ot E, (1) o o %1 T2 (0e)" 53 (35)

where s; indicates the deviatoric part of ¢}, and o, = [(3 /Z)S;}s;‘j]l/ *. As a consequence, the material pa-

rameters to be specified in computation are £ 't/ Ew, Vs, v,y and n 1n addition to V;. Assumed for them are the
following constants concerned with a continuous SiC fiber/titanium alloy composite (Kroupa and Neu,
1994):

v =025 v,=034, n=4, V,=0395. (36)

5.2. Finite element method and meshes

Fig. 4(a) and (b) illustrates the unit cells employed in this work for the square and hexagonal arrays of
fibers, respectively. As shown in the figures, their upper halves are taken as the semiunit cells and divided
into finite elements, which are isoparametric elements with four nodes. The small solid circles in the figures
indicate the nodal points at which y and ¢, are set to be zero due to the C-symmetric boundary condition,
as was shown by Eq. (9) and illustrated in Fig. 2(a) and (b).

In the finite element programming to solve Egs. (21) and (22), it is necessary to deal with the boundary
condition of ¥ and ¢, i.., either the C-symmetry or the Y-periodicity of * and ¢, on I'. The C-symmetry

Y Matrix
(@) (®)

Fig. 4. Unit cell ¥ and finite element mesh of semiunit cell ¥: (a) square array and (b) hexagonal array.
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of ¥ and ¢, on I, which is new, however, can be programmed in the same way as the Y-periodicity using
the penalty method. Hence the program of finite element analysis in the previous work (Ohno et al., 2000),
in which some details of the program were described especially with respect to the Y-periodicity, has been
extended further to incorporate the C-symmetric boundary condition.

The program mentioned above allows us to analyze semi-3D deformation by means of 2D finite element
meshes. Each node has three nodal values to represent the y;-, y»- and y;-components of x¥ and ¢,. We,
however, assume that deformation is semi-3D, i.e., uniform in the fiber direction even microscopically.
Then, since 3y /dy; = 0 and d¢,;/dy; = 0 (i = 1,2,3), 3D finite element meshes are not necessary (Noguchi
and Shimizu, 1999; Ohno et al., 2000).

5.3. Loading condition

Let the composites be subjected to the following two types of macroscopic loading to examine the
present theory.
(1) Transverse loading: This is the macroscopic loading in the y;—y, plane:

E,=1, X, =2 =0,  E,=E =E,=0, (37)

<n m

where the plane-strain condition in the fiber direction is assumed, and ¢ and 5 denote the loading coor-
dinate axes making an angle 6 with the y;- and y,-axes (Fig. 5(a)).

(2) Off-axial loading: The composites are subjected to the uniaxial loading given in a direction deviating
from the y;-axis by an angle ¢:

EL =1

{& ?

2.=2,=0, 2, =%,=%,=0, (38)

where ¢ and { denote the loading coordinate axes obtained by rotating the y;- and y;-axes by ¢ with respect
to the y,-axis (Fig. 5(b)).

5.4. Results of analysis

We, now show the results of analysis using the nondimensional macroscopic equivalent stress and strain
defined as

* 3 ok Q% 1/2 * 2% I 172
2o = (351-,-5,:,-) ’ Eeq = (EEijEi.i> ' (39)

where S;; indicates the deviatoric part of nondimensional macroscopic stress 2.

V2 V3 ¢

0 S
\5
S
(@ (b)

Fig. 5. Loading direction: (a) transverse loading and (b) off-axial loading.
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Let us start with the case of transverse loading. Fig. 6(a) and (b) shows the X, versus E; relations
obtained for the square and hexagonal fiber arrays under this loading, respectively. The same results were
obtained by taking the unit cells shown in Fig. 4(a) and (b) as the domains of analysis (Ohno et al., 2000).
Fig. 7(a) and (b) depicts the deformed meshes of the semiunit cells at £7, = 20 under the transverse loading
of 0 = 45°. They are just the upper halves of the deformed meshes of unit cells computed in the previous

work (Ohno et al., 2000). Therefore, we can say that the formulation based on semiunit cells is successful,

and that the C-symmetric boundary condition works well.
It is seen from Fig. 6(a) and (b) that, under transverse loading, the square and hexagonal fiber arrays

exhibit significant and little anisotropy in the macroscopic behavior, respectively. This feature was dis-

cussed in detail in the case of creep by Wu and Ohno (1999).
Now, we proceed to the case of off-axial loading. For this loading, we discuss only the hexagonal array

of fibers to save the space. Fig. 8 shows the 27 versus £, relations obtained for the hexagonal array. This
result is completely the same as the previous one (Ohno et al., 2000), which was computed using the unit cell
Y shown in Fig. 4(b). Fig. 9(a) illustrates the deformed mesh of the semiunit cell Y at E;, = 20 under the off-
axial loading of ¢ = 20°. This deformed mesh also coincides with the previous result (Ohno et al., 2000),
which is shown in Fig. 9(b) for reference. We thus have confirmed again the validity of the present theory

rebuilt by employing the semiunit cell ¥ and the C-symmetric boundary condition.

2 ————— , . 2 . ,
o I Fiber - I Fiber
*L\]N ! *L\]“’ '
1 o 1

2 :" o7 2 i 0 =0°

] 3 O 0 =30° =
o 25| & T 30

o ! <] ! \ o

g ‘,' §=45° § :' 6 =15°,45°

g 1= Y/ RO = g 1 _," e mmmmmmSS S e—s—————ooo—————--
= 1 L Matrix = | L Matrix

= ! L, £ ! s

3 ' ,’/ . gz ! ,'/ - /i\\\ Ex =1

i/ s Eie e i/ (<)

=) i / | . \r( 4 g Il / __J_‘__‘_._‘ L)% i
o= [ . A 4 9 = 1 [y

=] [ + r o [

s i = I J s |/ ‘)\’. ®

' \F ¥ oy w_-
Z :’/ Z 'Il SN2
| L |
0 10 . 20 0 10 . 20
Nondimensional macro-strain £, Nondimensional macro-strain E,,
(b)

(a)

Fig. 6. Relation of nondimensional equivalent macro-stress and macro-strain under transverse loading: (a) square array and (b)

hexagonal array.

(®)

@

Fig. 7. Deformation of semiunit cell at E;, = 20 under transverse loading of 6 = 45°: (a) square array and (b) hexagonal array
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Fig. 8. Relation of nondimensional equivalent macro-stress and macro-strain of hexagonal array under off-axial loading.

(@ (b)

Fig. 9. Deformation of cell at E;; = 20 under off-axial loading of ¢ = 20°: (a) semiunit cell and (b) unit cell.

It is seen from Fig. 8 that such a small value as ¢ = 10° gives noticeable nonlinearity to the macroscopic
stress—strain relation, and that the increase of ¢ beyond 30° does not significantly affect the macroscopic
tensile behavior. Such dependence on ¢ was observed for e.g. in the tensile experiments of a hybrid
composite GLARE 2 (Kawai et al., 1998).

6. Conclusions

In this work, on the assumption that the internal distributions of constituents, stress, strain, etc. affecting
perturbed velocity are symmetric with respect to the unit cell centers in periodic composites, the symmetry
of perturbed velocity fields, the domain of analysis, and the boundary condition were discussed. Then, the
homogenization theory developed for nonlinear time-dependent composites by the present authors (Wu
and Ohno, 1999; Ohno et al., 2000) was rebuilt and applied to analyze the elastic—viscoplastic properties of
unidirectional composites. The following results were thus obtained.

First, it was shown that if the internal distributions have the symmetry with respect to the unit cell
centers in periodic composites, they also have the symmetry with respect to the cell boundary facet centers.
Then, by taking notice that perturbed velocity satisfies the symmetry with respect to any of the two kinds of
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centers, semiunit cells were introduced so that either this point symmetry, called C-symmetry, or the Y-
periodicity can be prescribed as the boundary condition of perturbed velocity. Using this idea, the ho-
mogenization theory of nonlinear time-dependent composites was reformulated in order to reduce the
domain of analysis by half. The resulting theory, which turned out to have no formal difference from the
previous one except for the boundary condition, was verified by analyzing elastic—viscoplastic, unidirec-
tional composites subjected to transverse and off-axial loading.

Finally, let us point out that computation time can be reduced at most to about one eighth by adopting
semiunit cells, since such cells allow the number of finite elements to be decreased by half.
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